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The present work provides an overview of the different methods used in molecular diversity
analysis. Issues like identifying voids in proprietary databases, reducing the number of
redundancies present in databases, or designing focused libraries by grouping compounds similar
to a template with the aim to fine tune its properties, are potent diversity analysis tools that may
be used to optimize molecules based on their properties and specifically, to speed up the process of
lead discovery and optimization. The present work describes first methods that are used to
describe molecular systems. This is followed by a section devoted to describe different measures of
similarity between molecules, to finish with a description of different methods used to select
subsets molecules according to the constraints imposed. The final section deals with the validation

of these methods, based on different studies available in the literature.

Introduction

Diversity is a concept used in different contexts to measure the
extent of objects with differential features in a set.
Alternatively, diversity can be qualitatively used to assess the
odds of finding new members with differential features in a set.
The concept has traditionally been used in biology to indicate
the number of different species living in an ecosystem. Indeed,
biodiversity has been a topic of very wide concern for many
years. Within this context, it can be considered that Noah used
diversity criteria to fulfil his commitment to gather different
animals to travel with him in the Ark, by selecting the least
number possible of animals and at the same time, covering the
maximum number of different species.

In chemistry, molecular properties as well as biological
activities of compounds can be related to their molecular
structure. Thus, molecular diversity methods focus on the
evaluation of the extent of molecules with differential
structural features in a library or database implicitly assuming,
according to the structure-activity paradigm, that this process
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also distinguish the diversity of the library in terms of the
properties of the species as well as on their biological activities.
Accordingly, molecular diversity can be used in qualitative
terms to differentiate among a bunch of databases of chemical
compounds, which is the one that exhibits the larger variety of
compounds. Moreover, diversity of a database could also be
used in quantitative terms, provided that we can compare with
a reference database, containing molecules with all possible
features molecules could exhibit. If we had such a reference
library, diversity analysis performed on a database would
provide the characteristics of new compounds needed to be
added to a database in order to increase its diversity.
Construction of a universal library is of paramount impor-
tance in many areas. Specifically, in the field of bioactive
compounds, screening a universal library may represent an
enormous benefit in the drug discovery process, since such a
library would have the capability of identifying a new hit, any
time it is screened against a new therapeutic target.
Unfortunately, there is no simple way to construct such a
reference database exhibiting the highest diversity possible,
also known as universal library, although approximations can
be pursued. Intuitively, it can be thought that a universal
library could be constructed by adding new compounds to a
database until the addition of a new compound does not
increase its diversity (i.e. saturation is reached). However, this
procedure is foreseen unpractical, since there are more
potentially useful molecules than there are atoms in the
universe.! Accordingly, in order not to miss any useful
compound with special properties, methods are required in
order to carry out diversity analyses and to design tools to
eliminate redundant molecules from them, as well as to
provide guidance to the process of adding new compounds
to enrich the set.

Practical solutions to diversity analysis come from the
concept of chemical space. In geometrical terms, molecules can
be represented by points in a space whose coordinates depend
on the values of selected descriptors or features, and where the
diversity of the set can be assessed by the way points are
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distributed in this space. Considering this geometrical picture
of a database, a universal library can be viewed as a set of
points evenly distributed, with no voids in it. Diversity analysis
consists of a set of tools that permit to define chemical spaces
(coordinate axes) and to measure the distance between points,
providing a photograph of the database, useful for eliminating
redundancies and selecting new compounds to increase the
diversity of the set. Fig. 1 shows pictorially how a database is
represented in a chemical space through the definition of the
coordinate axes (features or descriptors). It should be pointed
out though, that chemical spaces are defined once a procedure
to describe molecules has been selected. Thus, upon the
selection of descriptors used for this purpose being either
structural or property-related, the chemical space can be
different and diverse results from the diversity analysis can be
obtained for the same database. Moreover, not only the
definition of the space, but the use of different metrics to
measure the distance between objects in a specific space can be
used. Accordingly, the saturation requirements of the database
can differ upon the way the space is defined and the metrics
used. It should be stressed however, that due to the fact that
the chemical spaces are geometrical models of databases, a
saturated one represents only an approximation of a universal
database within the chemical space selected.

In medicinal chemistry, diversity has shown to be a valuable
concept that can be used to alleviate the process of designing
new drugs.”> The process of bringing a new drug onto the
market is long and costly, taking an average time of 12 years
with an associated cost of 650 M€.* The design of a new drug
begins at the step of finding compounds that bind onto a
specific biological target (process known as lead discovery),
followed by the process of lead optimisation, where a selected
compound is modified with the aim of improving its
pharmacological profile, as well as to remove any possible
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toxicological effects. Afterwards, compounds are subject to
clinical trials, where their safety and efficacy are thoroughly
investigated. Diversity assessment methods can be used to
characterise the limitations and capabilities of databases of
compounds used for screening. Traditionally, the databases
most widely used for screening against new targets have been
proprietary databases, that consist of lists of compounds that
every pharmaceutical corporation has accumulated during
years, these are collections of products available from stock or
that can be easily synthesised. However, more recently,
combinatorial chemistry methods™® represent a new source
to design chemical libraries. In this procedure the same
synthetic scheme is used to attach different moieties to a
scaffold, enabling a parallel synthesis of the different
compounds to be performed by taking advantage of the
different reagents available. Following this methodology, if a
scaffold has different substituent attachment points, the
number of compounds that can be synthesised following this
strategy grows rapidly. However, actual synthesis of all
possible compounds requires an enormous effort that may
not be necessary. In order to cut down the number of
compounds selected for synthesis, procedures designed to
assess the diversity of a database, provide a guide to select the
least number of compounds necessary to cover the diversity of
the whole library, eliminating redundant molecules. Two
different types of combinatorial libraries can be designed of
complementary usefulness at different stages of the drug
discovery process. On the one hand, diverse libraries, aimed at
identifying new leads, designed to contain the least number of
compounds covering as many as possible different profiles. In
this case, diversity methods are used to select a few compounds
that represent the whole library, keeping the chances of finding
new leads with a lower economical investment. On the other
hand, focused libraries are useful in the process of lead
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optimisation. In this case diversity is used to select molecules
from the library that group together and consequently are
candidates that bind to the same target.

Measuring the diversity of a set of compounds involves
computation of the (dis)similarity between all the pairs of
molecules in the set. Measures of similarity can be carried out
either by comparing the properties of the molecules or by
comparing their structures. The average value of the dis-
similarity of the members of a set can be used as a measure of
the diversity of a set:

%1 i%diss(i,j)
. i=1j=1i#j
W= NN

where div(A) is a measure of the diversity of a set A, and diss(i,j) is
a measure of the dissimilarity between objects i and j. Dissimilarity
is a complementary measure of similarity, so that if a measure of
similarity between two objects is defined between 0 and 1, its
dissimilarity is simply defined as (1 — similarity). According to this
definition, the closer div(A) is to 1, the more diverse is the set
investigated.

In geometrical terms the process assessment of the diversity
of a set consists in understanding how far points are from each
other, according to a similarity criterion or metric. Moreover,
measuring the distance between molecules in a chemical space
permits to group them according to neighborhood criteria and
cconsequently according to their expected properties.
Depending on the analysis required, after grouping the
molecules the result can be used to select only a representative
molecule of each group, to generate the smallest most diverse
set within the limitations of the diversity of the initial set, or
simply selecting all the members of the same subgroup if we are
seeking molecules with common properties.

There is though an additional issue associated with any
measure of diversity. This concerns the different possible ways
to describe a molecular system. This largely influences the
metrics used to measure similarity between molecules and also,
the nature of the chemical space in which molecules are
represented.” A molecule can be unequivocally represented by
its electron density or by the coordinates and atomic numbers
of the constituent atoms. However, molecules can also be
represented by the properties they exhibit. Accordingly,
instead of describing molecules by their essence, they are
described by listing their own attributes. Molecular properties
used to describe molecules and further, to discriminate them in
a set, are called descriptors. The simplest descriptors of a
molecule are its bulk properties. These, so-called one-dimen-
sional descriptors, may include either structural or physico-
chemical properties of the molecules like: the octanol/water
partition coefficient (logP(o/w)), molecular weight, molecular
refractivity, dipole moment, polarisability, efc... Rationale for
using this type of descriptors comes from the experience
acquired in the last fifty years on QSAR studies.® A more
sophisticated way to describe molecules can be done using
structural fragments or topological indices as descriptors.
These are called two-dimensional descriptors since they can be
deduced from the chemical formula of a molecule. These
descriptors are molecular fragments that can be either
predetermined or generated from the analysis of the molecular

structure that is being inspected. There are also three-
dimensional descriptors providing molecular information in
the context of the 3D distribution of chemical groups,
described either using molecular field analysis or pharmaco-
phoric features. Comprehensive discussion about molecular
descriptors used in diversity analysis has been discussed
elsewhere.”!® A set of molecular descriptors defines the
chemical space, whose dimension corresponds to the number
of descriptors included. For feasibility reasons of handling
large sets of compounds, it is desirable to consider the
minimum number of descriptors, selecting only the most
significant in order to have the analysis procedure as simple a
possible. Principal Component Analysis (PCA) is usually the
technique used to reduce the number of variables, by selecting
the minimum set necessary to provide an adequate description
of the molecules.

Molecular representation

Actual information regarding values of the different descrip-
tors of the molecule, can be conveniently stored in a bit string,
usually called fingerprint since it represents a code that
identifies the molecule. A bit string stores information of 1D,
2D, 3D descriptors or a combination of the different
categories. The process of encoding the information into a
bit string can be done by binning property value ranges of the
different descriptors selected in intervals. In this way a bit is
associated to a small range of a property and the information
encoded simply indicates the presence or absence of a specific
feature or value range, that can be either structural or a bulk
property. For example, suppose that we are encoding the
hydrophobicity index logP. One possibility is to bin the
property in different intervals: [0,1), [1,2), [2,3), [3.,4), [4,5), 5 or
more. To each of these intervals a different bit of the string is
assigned, in such a way that if the molecule exhibits a logP of
4.5, the first, second, third, fourth and sixth bits will be ‘0’,
whereas bit number 5 will be ‘1°.

A completely different scheme encodes actual molecular
features into bit strings using an algorithm to compact the
information. This encoding procedure, called hashing, is
designed in such a way that similar structures exhibit similar
hashed fingerprints, and consequently, a large enough number
of bits needs to be considered in order to avoid dissimilar
structures exhibiting the same fingerprint. This way of
processing information has its origins in the representation
of chemical formulas either using systematic nomenclature like
the IUPAC or using line notation, like the popular SMILES, "
where molecules are described in a line including all the
constitutive atoms and connectivities.

A third approach to encode a molecular structure into a bit
string consists in enumerating the actual molecular features
using an expert system, where encoding is done without
hashing. This procedure uses larger amounts of computer
resources, and it is advised for medium size data sets.'?

There are several fingerprints proposed in the literature to
describe molecular systems, most of them make use of 2D
descriptors. These classes of descriptors are defined exclusively
on the information available in a chemical formula, and
consequently describe features that an expert will deduce from
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its inspection. In a rapid look at a chemical formula an expert
retrieves information about the chemical groups present in the
molecule. Accordingly, key descriptions used in the literature
to describe a molecular structure consist of analysing the
presence or not of different chemical groups from a dictionary.
This procedure can be easily translated to a bit string, and
examples of its implementation are the MACCS keys or in the
BCI fingerprints. More sophisticated is the information stored
in the MDL keys. In this case, stored information concerns
atoms and their environment in the form of topological
features, like the distance in number of bonds between two
different groups.

There are more sophisticated ways to describe a molecule
using 2D descriptors. Indeed, from the mathematical point of
view, a chemical formula can be viewed as a graph with nodes
(atoms) and edges (bonds). This information can be stored in
the form of a connection table that lists the characteristics of
the different atoms as well as their connections. Accordingly,
there have been proposed procedures to describe a molecule by
enumerating all bond paths through it.'* Starting with paths of
zero length (atoms), paths of length one (one atom and a
bond), up to paths of length seven. This information can also
be stored in a bit string providing a fingerprint of the molecule,
however, in this case, information is encoded through a
hashing procedure and consequently the same bit of two
different molecules can account for distinct structural features.
Examples of these type of fingerprints are the Daylight or the
UNITY fingerprints.

3D descriptors involve storing properties associated with the
3D atomic distribution of the molecule. One of these
approaches involves encoding the information obtained by
molecular field analysis. COMFA (comparative molecular field
analysis) is an appealing way to compare molecular fields.'* In
this procedure steric, electrostatic and hydrophobic fields are
compared using partial least square analysis to identify
the characteristics and distribution of the portions of the
molecular fields that contribute to the activity of the
compounds in regard to a target. One of the most serious
problems of this procedure concerns the alignment of
molecules. In the case where there is a common core in the
series, then it can be used to superimpose the different
structures. However, if this is not possible, the use of the
molecular moments of inertia or quadrupole moments are
alternative procedures. Another problem concerns molecular
flexibility. There are several procedures proposed in the
literature to deal with this problem. One of these procedures
consists of averaging the molecular field of a set of
conformations before comparing the molecular fields of two
molecules. Another procedure consists of identifying the
conformations of both molecules that produce a molecular
field most similar to that of the other molecule to which the
comparison is to be done. The most successful procedure is to
project the four-dimensional conformational space into a
three-dimensions by using a rule-based algorithm to generate
characteristic conformations of the molecule. In the case of
assessing the diversity of a set of compounds, it is interesting to
compare common substructures. This is called topomeric
CoMFA analysis."> This type of comparison provides the
possibility of comparing a wide range of structurally diverse

compounds that locally exhibit similar molecular fields, and
are then supposed to exhibit similar activities. Specifically, this
is a rational way to recognize the role played by bioisosteres.'®

3D molecular information can also be described in the form of
pharmacophoric features.!” A pharmacophore is a schematic
representation of steric and chemical features of a molecule that
may be relevant for its recognition by a receptor.
Pharmacophoric features include hydrogen accepting centres,
hydrogen donor centres, basic and acid centres, aromatic
centroids, lipophilic regions. All possible two, three or four
pharmacophores can be coded into a bit string, and each
molecule is stored with a ‘1’ in the corresponding position if the
pharmacophore is fulfilled and with a ‘0’ if it is not. In this
procedure, pharmacophores are coded according to the distance
between pharmacophoric features using a binning procedure of
discretisation. For example, in the ChemDiverse/DiR method
distance between two pharmacophoric features is binned as
follows: assign the first bit if distance is shorter than 1.7 A;
between 1.7 and 3.0 A assign a bit to each distance from 1.7 in
increments of 0.1 A; between 3.0 A and 7.0 A assign a bit to each
distance from 3.0 in increments of 0.5 A; between 7.0 A and
15 A assign a bit to each distance from 1.0 A in increments of
1.0 A; finally assign the next bit if the distance is larger than 15 A.
Combining all possible distances with the possible pharmaco-
phoric features defines all the possible pharmacophores. In this
procedure conformational analysis is required, to search
whether a molecule fulfils different pharmacophores from the
different conformations attainable. Fig. 2 shows pictorially the
different ways used to describe a molecular system.

In an attempt to reduce the dimensionality of the chemical
space, there have also been described in the literature
fingerprints combining 1D, 2D or 3D descriptors. Recently,
the BCUT descriptors (Burden—-CAS-University of Texas,
after the origin of their definition), have been developed in the
context of receptor-relevant subspace concept, and with the
constraint of generating descriptors that work in a low
dimensional chemical space.'® Combining the three classes of
descriptors, each BCUT condenses a large amount of
molecular structure and property information into a single
number. The properties integrated are relevant to receptor
affinity including, atomic polarisability, atomic charge, and
atomic hydrogen-bond donor and receptor ability. BCUTs are
the highest and the lowest eigenvalues of square matrices,
including property information in the diagonal elements and
distance-related information in the off-diagonal elements.
Various scaling factors are also incorporated for both the
diagonal and off-diagonal components. Generally, many
BCUT descriptors are calculated for a set of compounds,
and the subset of BCUTs that provides the best separation
between the compounds is selected using a chi-squared
algorithm. This subset, usually 4-6 BCUT descriptors, defines
a low dimension space.

Measures of similarity

Different procedures have been described in the literature to
measure molecular similarity, choosing one or the other
depends largely on the way molecules are described.!® There
are measures known as distance measures, where similarity is
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Fig. 2 Diverse procedures to encoding molecules.

expressed as the Euclidean distance between a pair of objects
in a chemical space. Other similarity measures include
similarity indices, based on a comparative analysis of the
presence or absence of certain features between the two
molecules. These are known as association measures. Other
measures are based on the computation of the statistical
significance of correlations between two sets of variables.
These are known as correlation measures. Finally, measures
based on the occurrence of observed features in datasets are
known as probabilistic measures.

3D molecular similarity

A molecule can be described by the coordinates and atomic
numbers of all constituent atoms. This information can be
used to compute an approximate wavefunction or electron
density and from it, all the properties of a molecule.
Accordingly, the different features of the molecules are
embedded in its electron density and consequently, similarity
between molecules can be measured from its direct compar-
ison. Similarity can be measured by computing the overlap
integral between the electron densities (p) of the two molecular
systems and in general, between the values of any property P
measured on both molecules: PA and PB. This is in fact a
measure of dissimilarity, since the more similar two molecules
are, the larger is the overlap integral. Furthermore, since the
overlap integral has the properties of an internal product
between vectors, a similarity index can be defined. The most
popular of the indices described in the literature is the Carbo
similarity index (CAB),* computed by dividing the overlap
matrix by root square of the density matrices of the molecules
compared:

J pappdt

Cap=——"—""""77
[f pade [ p3de]'"?

The Carbo similarity index is, as a matter of fact, the cosine
of the angle between the electron densities of the two molecules
compared. Computing the similarity between two molecules
has two difficulties associated, the first concerns the approx-
imate nature of the electron density used to perform such
calculations, and second, the dependence of the overlap matrix
on the way the two molecules are superimposed.

Use of the overlap integral offers the advantage of using
continuous measures, however the measure can be done
through a discretisation procedure of the space. This can be
useful when properties need to be calculated using a grid of
points, like molecular fields. A correlation procedure to
measure the similarity between molecules includes the
Spearman rank correlation coefficient, being mostly applied
for studies comparing the molecular electrostatic potential or
the accessible surface:

6 df

SAle_ 1;1
n’'—n

where d; is the difference in the property ranking at point i of the
two structures, and 7 is the total number of points over which the
property is measured.

Another useful way to compare molecules is through the
measurement of the Euclidean distance, that is the root-mean
square deviation of a property P, that is compared between
molecules A and B, summed to all points of the grid:

> (PAi—Ph)

sd =
rms N

Specifically, comparisons regarding the similarity of mole-
cules can be carried out using the atomic coordinates only.
Obviously, this can only be applied when all the atoms are
present in the two molecules, and consequently this method is
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particularly suitable to compare different conformations of a
molecule. However, this method can be very useful if we want
to compare the similarity between two objects in regard to
their fulfilling the requirements of a specific template, for
example a pharmacophore, or to compare how similar are two
molecules in regard to a substructure. Pharmacophores
provide a reasonable framework to measure the similarity
between two molecules in regard to their performance at being
recognized by a target receptor. The basic idea is to assume
that two molecules that exhibit a similar binding behavior
towards a target receptor fulfil a common pharmacophore that
defines its characteristic features. However, some caution must
be taken into account, since in some cases different compounds
eliciting the same action on a receptor bind differently, and
consequently they do not necessarily fulfil the same pharma-
cophoric requirements. Calculation of the rmsd can also be
extended to a pproperty P that is compared between molecules
A and B at different points of the 3D space.

2D molecular similarity

Measures of similarity can be also defined regarding the
topology of the molecules. For example, a probabilistic
similarity measure can be defined by considering the number
of times that a certain bond type (connectivity) appears in the
two molecules. If N;, N; are the number of times that a bond
type appears in molecules i and j, and N, is the number of
times it appears in the maximal totally connected subgraph
identified by comparing structures i and j, a distance (Sj) can

be define as:?!

_L/N N
Sii = (Nac+Nac)

For example, the distance between benzene and naphtha-

lene, considering the aromatic bond is: S = 0.5 (6/11 +
11/11) = 0.77.

MOLECULE A

MOLECULE B

Euclidean distance

diz = Z(XIA —xI.B)Z

Manhattan distance
di= Z|xf —x/ ‘

Tanimoto distance

010001100010101010110001001110011001 A=36

In the case of fingerprints, distance measures can be done
using a distance similarity or association measures.
Distance measures are more suitable for physical property
data. When the comparison is to be made between bit strings
whose bits are assigned to a specific feature being observed
or not , the presence or absent of that bit can give us an idea
of the similarity between the two molecules when this is
summed up to all the bits of the fingerprints. One of the most
widely used measure is the Tanimoto index, defined as follows:

C

dan = A+B—C

where A is the number of ‘1’ in the bit string representing molecule
A, B is the number of ‘1’ in the bit string representing molecule B,
and C is the number of bits that are filled simultaneously for
molecules A and B. Other similar measures include the Hamming
distance, defined as the number of bits which are different between
the two bit sets. For binary keys the Euclidean distance is the
square root of the Hamming distance. Fig. 3 shows pictorially the
procedure for measuring the distance between molecules A and B
using different metrics.

Classification methods

Selecting the subset of molecules of size n from a database of
size¢ N requires the evaluation of the combinations of n
elements chosen from a larger database of N elements:

N!
n!(N —n)!

a number big enough to design methods to select the compounds
without evaluating all the possible subsets (to select a subset of
10 compounds from a database of 100 compounds there are about
20 billion compounds). To classify molecules in different classes
according their similarity, three different strategies have been
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Fig. 3 Different procedures for measuring the distance between two molecules.
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proposed: cluster-based selection, partition-based selection, dis-
similarity-based selection methods and optimisation techniques.?

Cluster-based methods

Cluster analysis is a process for dividing a set into subsets or
clusters, where objects share a certain degree of similarity and
at the same time elements in different clusters are dissimilar.
There are several procedures to carry out the clustering
process. Basically, the procedures can be classified into
hierarchical methods and non-hierarchical methods. The use
of different methods depends basically on the size of the
database, as will discussed later.

Hierarchical methods are bottom-up procedures, and are
iterative procedures where the two nearest clusters are joined
at each step to form a single, larger cluster. Initially, each of
the m molecules in the set is treated as an individual cluster,
and after » iterations, the number of clusters created is m — n.
The procedure can be followed up to fit all the molecules in
one cluster. In the clustering process a dendogram can be
constructed to display the structure the of the data set. These
kind of methods are called hierarchical because they classify
the molecules in a bottom-up process, in such a way that
dendograms can be cut in a prefixed threshold value to set the
number of clusters of the set, requiring a termination criterion
to stop after an appropriate number of clusters has been
created. There are statistical tests that measure the probability
for the existence of any particular number of clusters, but
frequently no clear-cut optimum can be determined. A more
efficient procedure consists of adding a training set of
compounds to the initial set, to act as tracers of the clustering
process. This can be as simple as adding a few compounds,
some of them active and some inactive, for a target. The
number of clusters can be determined at the time these two sets
are discriminated.

Hierarchical clustering methods differ mainly in the criterion
used to create the clusters. In the single linkage method, the
similarity criterion selects the shorter distance between objects.
Alternatively, if the longest distance between two objects is the
criterion used, the method is called the complete linkage
method. Finally, if the average similarity criterion is used, the

FLUX DIAGRAM FOR NON HIERARCHICAL CLUSTERING METHODS
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Fig. 5 Flux diagram of a non-hierarchical clustering method.

method is called the group average linkage method. Fig. 4
shows schematically the flux diagram of this procedure.

Non-hierarchical methods do not generate a tree structure.
Generally, automatic determination of the cluster boundaries
is a major advantage of these methods, compared to the
hierarchical methods. Nevertheless a non-trivial parameter
setting is usually required that reflects some prior knowledge
of the space. Nearest neighbours methods are commonly
used under this title, the Jarvis—Patrick clustering method
being a typical representative. The method consists in grouping
all the nearest elements of the set, and clustering proceeds in
such a way that only mutual neighbours are grouped
together to form a cluster. Accordingly, for every element in
the group one has to list all the elements that are at a distance
less than a certain threshold. Two elements belong to the same
cluster if they are in the neighbour list of each other, and if
comparison of the lists of nearest neighbours of both elements
permits the identification of a few common elements. One of
the main difficulties associated with this method is the
impossibility of specifying the number of clusters required.
Fig. 5 shows schematically the flux diagram of these kind of
methods.

FLUX DIAGRAM FOR HIERARCHICAL CLUSTERING METHODS
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Fig. 4 Flux diagram of a hierarchical clustering method.
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Clustering methods reveal a natural partitioning of the
dataset. They are appropriate for high dimensionality data,
but limited to the treatment of small databases. Adding new
compounds to the subset requires initialising the procedure
from scratch.

Partitioning methods

These methods represent a natural procedure of partitioning
the chemical space. As mentioned before, each dimension of
the chemical space is a descriptor, and the individual
compounds are points in this space whose coordinates are
the values of each of the different descriptors. Each dimension
is divided into bins according to the range of the property. This
binning further defines a grid of bins or cells within the
chemistry space. Several cell-based diversity measures have
been proposed in the literature, ranging from simple occu-
pancy counts to entropy measures, x> values, and other
metrics. The smallest most diverse subset is then selected by
choosing one molecule of each cell. Partition-based methods
are especially useful for comparing different compound
populations and useful for identifying diversity voids, ie. cells
not occupied.

Partitioning methods have the advantage to identify voids in
a database. New compounds can be easily added in the
analysis of the set. However, a strong limitation regards the
arbitrariness of cell boundaries. It is a fast method, but
restricted to low elements of a low dimensional space.

Maximum dissimilarity-based selection

The maximum dissimilarity-based selection procedure is based
on the identification of a subset of compounds comprising the
n most dissimilar molecules in a database containing N
molecules (where, typically, n « N).»* The procedure in a
first step initialises the subset by transferring to it a compound
from the database. In a second step the procedure computes
the dissimilarity between each remaining compound in the
database and the compounds in the subset. In a third step,
the compound from the database that is most dissimilar to the
subset is selected and accepted. To finish, the algorithm returns
to step 2 if there are less than n compounds in the subset. There
are different versions of the procedure depending on how steps
1 or 3 are implemented. Thus, the first compound can be
selected at random, by choosing the most dissimilar in the
database or choosing the molecule that is in the centre of
the database. On the other hand, for choosing the rest of the
molecules different algorithms have been suggested in the
literature. Thus, MaxMin chooses compounds with maximum
distance to its closest neighbour in the subset, whereas
MaxSum chooses compounds according to maximum sum of
distances to all the compounds in the subset. Other dissim-
ilarity-based procedures include the sphere exclusion algo-
rithm.?* In this procedure, starting from a seed molecule
together with a predetermined threshold, generates a sphere
around the compound. The following molecules are incorpo-
rated to the sphere if the similarity index is lower than the
radius of the sphere and then is taken; if not the molecule
nucleates a new sphere. Finally, there are other algorithms like
D-optimal design, taken from the methods used in experiment

design. These methods are based on maximising the determi-
nant of the covariant design matrix that implies the minimisa-
tion of the prediction error of a possible regression model.*®
These methods are suited for high dimensionality spaces.
These are fast procedures, although tend to select outliers, i.e.
compounds with extreme values of some property.

Stochastic methods

These procedures attempt to select the most dissimilar subset
of n molecules, that are optimally diverse and representative in
the descriptor space.’®?” This is carried out through the
minimisation/maximisation of the diversity of the possible
subsets of dimension n from the database of dimension N,
using a diversity index. Procedures used for diversity
optimisation are typically, genetic algorithms and simulated
annealing.

The function to be optimised may include large dimension-
ality spaces. However, to use these procedures the diversity
index should be easy to calculate.

Other separation methods are based on information theory.
In this procedure, compounds are selected based on the
assumption that diversity design attempts to maximize the
information content of the resulting subset.”®*

Validation of the different approaches

Assessment of the performance of different methods available
in the literature for diversity measurements requires the
establishment of specific criteria for comparison purposes.
As mentioned before, diversity assessment can be carried out
to recognise possible voids in a chemical database, or in other
words, to understand whether a certain family of compounds
can increase the diversity of a database in order to be closer to
saturation. On the other hand, general diverse libraries are
designed to exhibit the minimum number of compounds that
represent the whole chemical space of the original set of
compounds. A third possibility includes the design of focused
libraries aimed at optimising lead compounds, that requires
the selection of a subset of active compounds from a larger
database. Accordingly, the different methods published in the
literature for diversity assessment and library design are
applied with different goals. Methods are also applied
depending on the size of the database analysed. Accordingly,
it should be borne in mind that the selection of the various
methodologies used depends specifically on the circumstances
of the library analysed. Selection of a classification procedure
is much influenced by the choice of molecular descriptors and,
consequently, they have to be considered together to determine
their overall performance.*

In the case of designing focused libraries, there are several
studies concerning the process of clustering active molecules
from those that are not. Thus, in a classical study3 ! the authors
found that 2D sub-structural keys performed better than 2D
fingerprints and 3D structural descriptors. More specifically,
the authors concluded that MACCS keys, together with a
hierarchical clustering algorithm performed the best for
discriminating between active and non-active compounds.
However, using 2D fingerprints as molecular descriptors
together with the use of cluster analysis requires the choice
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of a distance measure. In a recent study,'? the performance of
the Tanimoto and Euclidean distances to discriminate between
active and non-active compounds from a database was
compared, concluding that the former performs better than
the latter. Other studies suggest that statistical methods,
including linear discriminant analysis and recursive partition-
ing, perform better that hierarchical clustering methods.*?
Whereas different studies performed in the past suggest that
2D descriptors are enough for diversity assessment, analysis of
the performance of different descriptors for its capacity to
identify isosteres, demonstrated that a combination of 2D and
3D molecular field descriptions performs better than a set of
2D descriptors.'® Similarly, the use of BCUT descriptors,
intended to handle small dimension chemical spaces, together
with cell-based partitioning methods has demonstrated a high
capability to cluster together active molecules involving
different scaffolds.*?

Libraries designed following strategies to select the least
number of molecules representing the diversity of a database,
avoiding redundancies in the chemical database, are used in
lead discovery. Cell-based methods are specially suited for this
purpose, since selection of a representative from each box
provides a subset containing the whole diversity of the original
set. Comparison of different binning schemes by their ability to
provide an even distribution, suggests that non-linear binning
performs better than linear binning.?’ Diversity-based com-
pound selection methods appear to be superior for this task.>*
Comparison of different versions of these methods, suggest
that these methods increase their efficiency in regard to
random selection of compounds with size of the database.”
Furthermore, the work also concludes that they appear to be
the most effective in selecting compounds associated with a
range of activities. Moreover, in a very interesting study,
Potter et al®® stressed that the use of the maximum-
dissimilarity algorithm, together with 2D fingerprints and the
Tanimoto index, provide a better performance than a random
compound selection even for a small database of 1,300
compounds. Cluster methods can also be used for this purpose.
Using an agglomerative cluster centre method, Potter et al.
demonstrated the superiority of the procedure for selecting a
subset of representative active compounds in regard to a
random selection. Using a small database of about 300
compounds, the authors found that 40 compounds (12% of
database size) were enough to cover all the biological target
classes of the database by at least one hit per target.
Comparison with a random selection procedure showed that
even selecting 80 compounds randomly covered only 65% of
the biological targets of the database.

In the case of the assessment of the diversity of a database,
only a few studies have been published in the past. Thus, Voigt
et al*® compared the diversity of different commercial and
public databases, including the National Cancer Institute
(NCI), the Available chemical directory (ACD), Chem ACX,
the Maybridge Catalog, the Asinex database, the Sigma-
Aldrich catalog, the World Drug Index (WDI) and the organic
part of the Cambridge Structural Database (CSD). The
authors used two stochastic selection procedures. On the one
hand, the optimal dissimilarity selection method®® and on the
other hand, the stochastic clustering algorithm. The authors

selected the smaller subset of compounds representing the
diversity of the different databases, finding similar results with
the two methods. The CSD appears as the most diverse with a
39% (depending on the procedure used to assess it), and the
least diverse appears the Asinex database with a 10% diversity.
The CSD also appears as the most diverse chemical database
in different studies.®’

Conclusions

The concept of diversity of a database of compounds can be
used in the selection of a subset of compounds representing all
the differential molecular features of the original set. This is a
useful concept since it is not necessary to synthesize and test all
the molecules of the set, but only those that represent the
whole set. This can be done in practice by grouping the
molecules of the set by their similarity and selecting only
the representative of each group. This requires defining a
chemical space, where molecules are represented by points,
followed by a similarity measure that permits knowing the
nearest neighbours of each of them. Neighbourhood
measures permit classification of molecules into subsets. On
the other hand, diversity can be used to find that subgroup of
molecules that exhibits similar properties. In this case, it is
necessary to group the molecules of the database, and then
select those molecules of the group expected to exhibit
similar physicochemical properties. Diversity can also be used
to compare two databases and to assess the degree of
saturation of a database This procedure could also be used
to speculate about the size of a database in order to be
universal.

In order to make use of the concept of diversity, different
computational tools have been developed. First, procedures to
define the chemical space according to the way molecules can
be described, from a collection of 1D, 2D or 3D descriptors
embedded in fingerprints to the use of the molecular
coordinates and/or the electronic density of the molecular
systems. Second, procedures to measure the (dis)similarity
between the objects of the chemical space, from the use of an
Euclidean distance to the use of more elaborated procedures
according to the way molecules are described. Finally, a
procedure to group the molecules according to their similarity.
For this purpose different methods have been developed
including cluster methods and binning methods. All these
techniques require robust algorithms for a useful data handling
and database mining.*®

As a final remark, we consider that diversity analysis
methods permit the extraction of relevant information about
large databases of compounds, providing an analysis of the
features both internal, about the coherence of the contents, as
well as the features before specific external constraints. Due to
the difficulties in creating an experimentally well balanced
database and the need to speed up the process of finding new
molecules with specific characteristics, diversity analysis
methods will continue offering a tool to select compounds
with specific features in the least time possible and saving
costly experimental procedures. For this purpose there is a
constant need to contrast the different tools and procedures
available.

This journal is © The Royal Society of Chemistry 2005
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